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Abstract

A multivariate calibration approach, using partial least squares regression, has been developed 

for measurement of aerosol elemental concentration. A training set consisting of 25 orthogonal 

aerosol samples with 9 factors (elements: Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb, Ti) and 5 levels 

(elemental concentrations) was designed. Spectral information was obtained for each aerosol 

sample using aerosol spark emission spectroscopy (ASES) at a time resolution of 1 minute. 

Simultaneous filter samples were collected for determination of elemental concentration using an 

inductively coupled plasma mass spectrometry (ICP-MS) analysis. Two regression models, PLS1 

and PLS2, were developed to predict mass concentration from spectral measurements. Prediction 

ability of the models improved substantially when only signature wavelengths were included 

instead of the entire spectrum. The PLS1 model with 45 selected spectral variables (PLS1-45 

model) presented the lowest relative root mean square error of cross validation (RMSECV; 16 

- 35%). The detection limits using the PLS1-45 model, for the nine elements were in the range 

of 0.16 – 0.50 μg/m3. The performance of both multivariate and univariate regression models 

were tested for an unknown sample of welding fume aerosol. The multivariate model did not 

provide significantly better prediction compared to the univariate model. In spite of the difference 

in matrices of calibration aerosol and the unknown test aerosol, the results from PLS model show 

good agreement with those from filter measurements. The relative root mean square error of 

prediction (RMSEP) obtained from PLS1-45 model was 13% for Cr, 23% for Fe, 22% for Mn 

and 12% for Ni. The study shows that in spite of lower spectral resolution and lack of sample 

preparation, reliable and robust measurements can be obtained using the proposed calibration 

method based on PLS regression.
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1 Introduction

Exposure to airborne particles containing toxic metals in industrial atmospheres have 

adverse health effects on workers, thereby prompting the need for reliable measurement 

methods for exposure characterization. The most widely used methods for determining 

concentrations of particulate toxic metals involve filter collection over several hours, 

followed by off-line analyses.1, 2 These methods are time-consuming and cannot capture 

short-term exposures. Workers cannot obtain instant feedback on their exposure to inhalable 

hazards. Developing real-time methods for measuring aerosol chemical composition is of 

great significance to instantaneously assess exposure risks.

Our group has investigated various field portable microplasma spectroscopy techniques for 

real-time measurement of elemental species in aerosol particles3-6 using broadband liquid 

crystal display (LCD) spectrometers. These techniques include laser-induced breakdown 

spectroscopy (LIBS), spark emission spectroscopy (SES) and glow discharge optical 

emission spectroscopy (GD-OES), and allow simultaneous multielemental measurement of 

aerosol. While these methods offer several practical advantages with respect to development 

of low-cost, hand-portable instruments for exposure monitoring, they also suffer from 

drawbacks relating to relatively inferior analytical figures of merit (compared to laboratory 

instruments) owing to lack of optimal sample preparation and reduced wavelength resolution 

of LCD spectrometers. The objective of this study was to investigate the usefulness of 

multivariate calibration approaches to improve calibration of microplasma methods for 

multielemental aerosol analysis.

For quantitative analysis of aerosols using microplasma spectroscopy, a univariate 

calibration approach has been widely used to construct calibration curves for relating 

the signal intensity and elemental concentration or mass.3, 4, 7-10 However, in most 

spectroscopic methods, quantitative spectral analyses remains challenging due to sample 

matrix effects (physical and chemical matrix effects) and spectral interferences.11 The 

emission signal intensity from one element is affected, among other factors, by the overall 

chemical composition of the sample. These matrix effects can result in large uncertainties if 

univariate calibration methods are used, especially when unknown samples have different 

chemical matrices from the calibration standards.12-14 To minimize the sample matrix 

effects, matrix-matched standards are often used for univariate calibration in spectroscopic 

methods.15, 16 However, preparation and certification of matrix-matched standards are 

tedious for a given analytical measurement.

The application of multivariate calibration in spectroscopic analysis has proved to be 

beneficial in accounting for matrix effects as well as eliminating spectral interferences.13, 17 

Multivariate calibration has been widely used for analysis of natural samples (such as 

rubber antioxidants, diesel fuel, seeds, and wine fermentations) by near-infrared (NIR) 

spectroscopy which usually presents relatively weak and highly overlapping spectral bands. 
18-22 Multivariate calibration has also been employed in atomic emission spectroscopy for 

elemental analysis of mixtures, such as steels, alloys, coal, and soil.23-27 Unburned carbon 

in fly ash was analysed using LIBS and showed that the multivariate calibration had better 

performance than univariate calibration as matrix effects caused by other components in fly 
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ash could be taken into account.13 Comparison of single and multivariate calibration for 

determination of Si, Mn, Cr and Ni in high-alloyed stainless steels using LIBS has shown 

that multivariate analysis of spectral data was more effective and accurate when analytical 

lines overlapped.17

In this paper, we present a multivariate calibration approach for simultaneous measurement 

of multiple elements in aerosols using SES. Partial least squares (PLS) regression was used 

with a calibration training set to build PLS models for predicting elemental concentration 

of aerosols. The prediction capability of the PLS models (PLS1 and PLS2) with different 

configurations were compared for unknown test sample of welding fume aerosol.

2 Methods

2.1 Instrumentation

Spark emission spectroscopy was used for quantitative measurement of elemental 

concentration of aerosols. The details of this method are described elsewhere. 4, 5, 28 Briefly, 

this method involves collection of particles onto a small electrode tip (500 μm in diameter) 

with a corona aerosol microconcentrator (CAM) 28, followed by ablation of particles by 

a spark produced using a high voltage (HV) pulse generator (200 mJ per pulse; ARC-2, 

Cascodium Inc., Andover, MA). The optical emission from excited atomic and ionic species 

in the spark-induced plasma was collected by a broadband spectrometer (200 – 900 nm 

wavelength range, 0.1 nm resolution; LIBS 2500 Plus; Ocean Optics Inc.; Dunedin, FL) 

for spectrochemical analysis. A delay time of 5 μs and a gate width of 1 ms were used. 

The spectral data were used to identify elements and determine their mass in the collected 

particle samples.

2.2 Calibration Aerosols

Aerosol containing metals of interest were generated from solutions using a pneumatic 

atomizer (model 3076, TSI Inc., Shoreview, MN). The precursor solutions used in the 

atomizer were prepared using water-soluble nitrates of analytes of interest. A multilevel 

multifactor training set, containing various metals at various concentration levels, was 

designed for multivariate calibration. 29 It consisted of 25 samples with 9 mutually 

orthogonal factors (i.e., elements: Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb, Ti) and 5 levels (elemental 

concentration in solution), as shown in Table 1.

2.3 Experimental procedure

Fig. 1 shows the schematic diagram of the multivariate calibration experimental procedure 

for measurement of aerosol elemental concentrations. Test aerosol was generated using a 

pneumatic atomizer, then passed through a diffusion dryer. The dry aerosol was introduced 

into a CAM for near real-time analysis using SES. The particles were collected in CAM for 

1 minute at a flow rate of 2 L min−1, followed by SES measurement following procedures 

described elsewhere. 4, 5 Test aerosol sample was analysed by SES in five consecutive 

measurements (the relative standard deviation of signal intensity was less than 15%), and 

their average was used to obtain the spectra for each sample. The same test aerosol was 

also simultaneously collected on a polyvinyl chloride (PVC) filter for subsequent off-line 
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elemental analysis. The particles were collected for 30 minutes at a flow rate of 2 L 

min−1. Each filter sample was digested following NIOSH Method 7303 (Hot Block/HCl/

HNO3 Digestion) and then analysed using inductively coupled plasma mass spectrometry 

(ICP-MS). ICP-MS was used for filter sample analysis in this study because of its superior 

detection limits compared to ICP-AES for most elements. Very low detection limits were 

desirable in this study due to short collection times (for filter samples) used in this study. 

Studies have shown that ICP-MS has far superior recoveries (~100%) and precision (<0.2) 

for determination of metals in filter samples.30 The elemental masses of the aerosol particles 

collected on the electrode in CAM were deduced from the elemental air concentrations 

obtained from filter collection and ICP-MS analysis, and are shown in Table 2. A model was 

constructed using PLS regression as described below.

2.4 PLS regression model

A PLS model was constructed by using the measured spectra for all the test aerosols 

generated from the ‘training set’ calibration solutions. The model involves a linear 

regression between predictor/explanatory variables λi and response/dependent variables mj. 

For each measurement, the predicted mass for element j, mj is given by,

mj = ∑
i = 0

p
βjiλi + εj (1)

where, λi is the signal intensity at wavelength i of emission spectra, βji the linear regression 

coefficient for element j at each wavelength of emission spectra and εj is a noise term for 

element j. p is the number of selected discrete wavelengths in each emission spectra.

The general matrix equation for the entire data takes the following form:

λnp = TPT + ε1
mnq = UQT + ε2

(2)

where λnpis an n × p matrix of predictor variables, mnq is an n × q matrix of response 

variables; T and U matrices represent the projections of λnp and mnq, respectively; P and Q 
represent the matrices of loadings of the original variables; and ε1 and ε2 are the residual 

matrices related to the noise. In this study, n = 25, corresponds to the number of total 

samples in the training set. The number of explanatory variables p is same as the number 

of wavelengths included in the emission spectra. Also the number of response variables q is 

same as the number of elements in each sample in the training set, and q = 9.

Two types of models were constructed for each analyte: model PLS1 and model PLS2. In 

model PLS1, only one element was modelled each time (i.e. nine separate PLS1 models 

were built for each element), while all nine elements were simultaneously used in a single 

PLS2 model. 31 Different number of explanatory variables (i.e. signal intensity) were 

selected as model inputs to build various models. The number of latent variables for each 

model was chosen to correspond to the lowest root mean square error of the cross validation 

(RMSECV),32 which typically ranged from 3–6 ng. Cross validation, which involves 

verifying the prediction capability of the PLS model, was performed using the ‘leave-one-
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out’ method. In this method, only one sample at a time is left out of the calibration and 

the remaining samples are used for constructing a model to predict the sample that has 

been left out.32 This procedure is repeated until all samples have been left out once. The 

performance of the regression models were evaluated by examining their relative RMSECV 

and correlation coefficients R2 of cross validation. The PLS analyses were carried out using 

the software The Unscrambler 10.0 X (CAMO Software Inc., Woodbridge, NJ).

3 Results and discussion

3.1 Wavelength selection

Several studies involving chemometric analysis of spectroscopic data have employed select 

wavelengths as the explanatory variables, and have shown that the prediction ability of 

multivariate regression models could be improved when using the wavelengths that capture 

or explain maximum variance in the analyte concentration. 33, 34 In this study, PLS 

regression coefficients were used for selection of the most relevant wavelengths for each Y 

response variable (i.e., elemental mass).33-35 The wavelengths which have larger regression 

coefficients represent the emission signals that are better correlated to the mass of analyte.

Fig. 2 shows the PLS1 regression coefficients for Cr in the wavelength range of 300 – 

540 nm. Highest regression coefficients were observed around 520 nm wavelength. The 

magnified inset (Fig. 2(c)) presents three overlapping peaks around 520 nm. These three 

peaks are consistent with the Cr atomic emission lines: Cr I 520.45 nm, Cr I 520.60 nm, 

and Cr I 520.84 nm, according to the National Institute of Standards and Technology (NIST) 

atomic spectral database. In addition to the triplet peak, there are three consecutive peaks 

observed around 360 nm (Fig. 2(a)), 425 nm (Fig. 2(b)) and 530 nm (Fig. 2(d)), respectively. 

They correspond to Cr I emission lines at 357.87 nm, 359.35 nm, 360.53 nm, 425.43 nm, 

427.48 nm, 428.97 nm, 529.82 nm, 532.83 nm and 534.58 nm according to the NIST atomic 

spectral database. Similar relevant wavelengths for all the other elements of interest in this 

study were chosen by analysing their PLS regression coefficients. The PLS1 regression 

coefficients for all the remaining elements are shown in Fig. S1 in the Supplemental 

Information. Five explanatory variables for each emission peak (central wavelength pixel, 

including two additional pixels on each side) were used. For each element, wavelengths with 

regression coefficients greater than three times the standard deviation (3σ) around the mean 

regression coefficient (over all the wavelengths) were selected for subsequent verification. 

Table 3 shows the emission lines we have verified for each element based on NIST atomic 

spectra database (ASD). These lines are not identified as self-absorbing or self-reversing 

lines in the ASD. The emission lines highlighted in bold were chosen to construct PLS1-45 

and univariate regression models for each element; these lines exhibit relatively higher 

regression coefficients and minimal spectral interference.

3.2 Multivariate calibration using PLS

Both PLS1 and PLS2 models were built by constructing the relationship between elemental 

mass and spectra. For constructing the PLS1 model, only one analyte was chosen as the 

response variable mnj (j = 1, 2, …, or 9). Here, nine PLS1 models were constructed 

separately for each analyte (i.e. response variable). For the PLS2 model, all the nine 
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response variables mnq were chosen as the response variables simultaneously. Three λnp 

matrices with different number of variables were selected as explanatory variables to build 

various PLS models. These three λnp matrices include: (i) explanatory variables containing 

the whole spectra ranging from 300 to 540 nm (4312 variables), (ii) significant explanatory 

variables containing multiple emission peaks related to the analytes (all the emission peaks 

shown in Table 3, i.e., 290 variables), and (iii) a subset of significant explanatory variables 

containing only one emission peak for each element (i.e., the ones with relatively higher 

regression coefficient and minimal spectral interference with other elements, highlighted in 

Table 3; 45 variables in total for all the nine elements). To simplify the model description, 

these models were denoted as PLS1-4312, PLS1-290, PLS1-45, PLS2-4312, PLS2-290, and 

PLS2-45, respectively.

Table 4 shows the relative RMSECV and R2 obtained from cross validation for different 

models. Comparison of the PLS models constructed with different numbers of variables 

shows that the models with selected variables (PLS1-290, PLS1-45, PLS2-290, and 

PLS2-45) were significantly superior to the models with the whole spectra (PLS1-4312 

and PLS2-4312). For PLS1 models, as the variable number is reduced from 4312 to 45, 

the average relative RMSECV for the nine elements is reduced from 36% to 25% and the 

average R2 is improved from 0.65 to 0.84. This result demonstrates that variable selection 

plays an important role in multivariate calibration for elemental mass using spark emission 

spectroscopy. Although the PLS model has the ability to deal with numerous variables, 

the error of prediction could deteriorate if the entire raw spectral data are used in the 

calibration, because the majority of data consist of noise. Therefore, the use of selected 

explanatory variables that are most relevant to the underlying phenomenon as input variables 

is essential to construct the optimal PLS model. Comparison of PLS1 models using the 

selected wavelengths (PLS1-290 and PLS1-45) shows that their prediction abilities are quite 

similar. This is because the signal intensities of multiple emission peaks from the same 

element are correlated. Selection of one emission peak for each element as input variables 

of the PLS model is sufficient for constructing accurate multivariate models. Of all the 

nine elements, Fe and Pb show low R2 values, likely due to the high detection limits of 

Fe and Pb in our system (the detection limits are shown in Table 5). In this study, the 

elemental concentration of Fe and Pb in the calibration aerosol were close to their limit of 

quantification, leading to increased measurement uncertainty and poor R2.

Table 4 also shows that the relative RMSECVs of PLS1 models are 2 – 4% smaller than 

PLS2 models. This suggests that the PLS1 models have lower error than the PLS2 models. 

However, the need to construct a separate model for each element is a drawback of PLS1 

approach. On the other hand, one PLS2 model can be applied simultaneously to all the 

elements and is easier to implement.

Using the 25 multielement samples in the training set, a univariate regression model (U-ME) 

was also constructed for each element by plotting the signal intensity of an emission line 

as a function of elemental mass. For each element, the emission line with the highest 

regression coefficient was used. The signal intensity of an emission line was calculated 

as either the peak height or the peak area, both after baseline correction. The U-ME 

models were described using linear regression curves. These univariate calibration curves 
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(based on peak height) are shown in Fig. S2 in the Supplemental Information. The R2 

and RMSE of the univariate regression are also shown in Table 4. The R2 values in the 

parenthesis are obtained from univariate regression using peak area for each element. Both 

the peak height- and peak area-based calibration curves yielded similar sensitivity. For 

most elements, the U-ME model gives similar R2 and RMSE values to those of the PLS 

models with select variables (i.e. PLS1-290, PLS1-45, PLS2-290, and PLS2-45). There is no 

consistent evidence in the literature about the effectiveness of different calibration methods 

(i.e. multivariate and univariate methods).13, 14, 17 For example, some studies on sample 

analysis using LIBS suggest that multivariate calibration provides improved accuracy and 

precision compared with univariate calibration, 13, 14 while another study on determination 

of elements in stainless steels using LIBS showed that the univariate calibration provided the 

best prediction if appropriate, non-overlapping emission lines could be found. 17 To a certain 

extent, the performance of different calibration approaches depends on both spectral overlap 

and design of the calibration experiments.36 In this study, we designed the training set with 

orthogonal factors (using elements relevant to welding aerosol measurement) and selected 

the non-overlapping emission peaks for calibration. Both the univariate and multivariate 

calibration approaches showed similar prediction capability.

Fig. 3 shows comparison of calibration values (open circle) with the corresponding cross-

validation (solid triangle) for the PLS1-45 model. The mass predicted by the model is 

plotted on the y-axis and corresponding to the measured mass on the x-axis. These models 

were constructed with 9, 5, 6, 5, 3, 4, 3, 6, 5 latent variables for Cr, Mn, Fe, Ni, Cu, Zn, Cd, 

Pb, and Ti, respectively. The PLS regression results (open circle) show a strong correlation 

between the predicted and measured elemental mass, with R2 values in the range of 0.81 – 

0.96 for different elements. The cross validation results (solid triangle) also show a strong 

correlation with an average R2 values of 0.84. The relative RMSECV of PLS1-45 models 

for different elements is in the range of 16 – 35%. For Fe low R2 (0.71) and high RMSECV 

(35%) were observed, probably due to the poor detection limits of Fe in our system (the 

detection limit is shown in Table 5). A large uncertainty might be produced when the 

elemental mass concentration of calibration aerosol is near the limits of quantification. 

Matrix effects may also have been relatively more significant for Fe measurement.

3.3 Limits of detection

According to 3-σ criteria defined by the International Union of Pure and Applied Chemistry 

(IUPAC),37 the limit of detection (LOD) for univariate calibration is expressed as,

mLOD = 3σ
S (3)

where σ is the standard deviation of the blank at the selected emission line and S the 

sensitivity given by the slope of the calibration curve of univariate calibration. Blank 

measurements were taken and σ was obtained by averaging over 20 replicate blank 

measurements.

LOD in multivariate calibration was determined analogously to the univariate calibration: 
38, 39
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mLOD = 3.3σ
S = 3.3σ∥ b ∥ = 3.3σ b1

2 + ⋯ + bn
2

(4)

where σ is an estimate of the noise level in the data, S is the sensitivity of the PLS 

model, that gives the fraction of analytical signal due to the increase of the concentration 

of a particular analyte at unit concentration, ∥b∥ is the Euclidian norm of the regression 

coefficients vector, and bn is the nth regression coefficient. σ was obtained by measuring the 

variation of the noise in the selected regions for each analyte. S was estimated as the inverse 

of ∥b∥. Table 5 shows the LOD obtained from both univariate calibration and multivariate 

calibration (PLS1-45 model) for elemental measurement using SES. The mass LOD for 

multivariate calibration is in the range of 0.8 – 2.5 ng depending on the element, with the 

lowest LOD for Cd and the highest LOD for Fe. The LOD for multivariate calibration is 

in the range of 0.16 – 0.50 μg m−3 in terms of air concentration, calculated by assuming 

a flow rate of 2 L min−1, a collection time of 5 minutes, and particle collection efficiency 

of 0.5 for our system. Comparison of the LODs from univariate and multivariate calibration 

shows that both approaches provide similar LODs for most elements (except Fe, Ni, and 

Pb). This result is consistent with that found by Braga et al. in their study on comparison of 

univariate and multivariate calibration for determination of micronutrients in plant materials 

using LIBS. 37 It is worth noting that the LOD for Fe, Ni, and Pb from univariate calibration 

is nearly twice that from the multivariate calibration. This difference could possibly be due 

to higher measurement uncertainties for these elements arising from matrix effects.

3.4 Application to welding aerosol measurement

We applied the multivariate regression models (PLS1-45 and PLS1-290), developed using 

the training set, to the measurement of unknown elemental concentration of welding aerosol. 

Test welding aerosol was generated by aerosolizing suspension of stainless steel welding 

fume reference material (HSL SSWF-01, Health & Safety Laboratory, Buxton, UK). It 

should be noted that the matrix composition of this reference material (i.e., number of 

elements and their relative concentration in the matrix) and their solubility are different from 

that of the calibration samples (Table 1). The compounds used for calibration were soluble, 

while the welding fume particles were insoluble. From the suspension containing welding 

fume reference material, aerosols with five different air concentration levels were obtained 

through dilution of the aerosol with clean, particle-free air. Test aerosols were collected for 2 

minutes using the ASES system at 2 L min−1. The elemental masses in the collected samples 

were predicted using both multivariate and univariate regression models, and then inverted to 

elemental air concentrations. Three repeat measurements were performed by ASES for each 

test aerosol sample. Simultaneously, filter samples were collected (for 30 min) in parallel to 

obtain the elemental concentrations of test welding aerosol by laboratory ICP-MS analysis 

after sample digestion. The test aerosols were relatively stable during these 30 minutes.

Fig. 4 shows the comparison of elemental concentration predicted by the regression models: 

(a) PLS1-45 model, (b) PLS1-290 model, (c) univariate calibration from single element 

solutions (U-SE model). Model predictions are compared with corresponding ICP-MS 

measurements shown on x-axis. Fig. 4 shows that most (17 out of 20 for PLS1-45 model, 16 

out of 20 for PLS1-290 model, and 15 out of 20 for U-SE model) samples agreed with the 
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ICP-MS measurements within the ±25% bias. The results from the multivariate models [Fig. 

4 (a) and (b)] show good agreement with those from filter samples using ICP-MS. However, 

it is worth noting that the univariate calibration curve exhibits non-linear behaviour at 

higher mass loadings. The effect was not pronounced at mass loadings studied in this work; 

however, the extrapolation of the curve seems to suggest significantly nonlinear behaviour 

at mass loadings above 100 μg/m3 [Fig. 4 (c)]. In spite of the difference in matrices, with 

respect to solubility and elemental composition, of calibration aerosol and welding fume 

aerosol, the agreement between ASES measurements and the ICP-MS measurements is 

good. This demonstrates that the prediction models constructed using particles aerosolized 

from soluble precursor species could be reliably used for measurement of unknown 

insoluble (or soluble) particles using ASES. This significantly simplifies calibration of field 

portable ASES instruments.

Relative root mean square error of prediction (RMSEP) was used to estimate the accuracy 

of our regression models. The relative RMSEP from the PLS1-45 model was 13% for 

Cr, 23% for Fe, 22% for Mn and 12% for Ni. The relative RMSEP from the PLS1-290 

model was 12% for Cr, 25% for Fe, 21% for Mn and 13% for Ni. The relative RMSEP 

from the U-SE model was 14% for Cr, 27% for Fe, 29% for Mn and 10% for Ni. 

Multivariate calibration approach resulted in slightly better prediction accuracy than the 

single element univariate calibration approach when they were applied to measurement 

of welding fume aerosol. The welding aerosol represented a smaller subset of calibration 

aerosol in terms of the number of elements—the calibration aerosol had nine elements; 

whereas the welding aerosol had only four elements. Moreover, as noted above, unlike the 

calibration aerosols, the welding aerosol particles were insoluble in water. The matrix effects 

in these samples may not be pronounced, which may explain somewhat similar results from 

both univariate and multivariate methods. However, the multivariate method may provide 

better precision in cases where significant matrix effects or nonlinear calibration curve are 

expected. Multivariate methods should also provide better precision and accuracy for cases 

involving significant spectral overlap or interference for analytes of interest.

The error bars in Fig. 4 show the standard deviation of three replicate measurements, which 

ranged from 7 – 19%, demonstrating good precision of the ASES aerosol measurement 

system.

Conclusions

A multivariate calibration approach for measurement of aerosol elemental concentrations 

by SES was developed. The orthogonal training set design (Table 1) in combination with 

suitable multivariate calibration allows one to make full use of the multielemental emission 

spectra without the loss of spectral selectivity. It was shown that PLS regression coefficients 

can be judiciously used as a guide for selecting most relevant portions of the emission 

spectra and allow construction of meaningful multivariate regression models.

Separate PLS models for single element (i.e. model PLS1) offers slightly improved 

prediction ability than a single PLS model for multiple elements (model PLS2). Using a 

training set with orthogonal factors, it was found that multivariate models provided slightly 

Zheng et al. Page 9

J Anal At Spectrom. Author manuscript; available in PMC 2022 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



better prediction compared to the univariate model. The simplicity of univariate calibration 

methods may be more attractive in applications where the unknown matrix has fewer 

elements and is relatively homogenous. However, multivariate calibration may be preferable 

for aerosol particles containing large numbers of elements with highly varying elemental 

ratios. The multivariate model may also provide better precision when significant spectral 

interferences or overlapping is expected.

Application of the PLS models to welding aerosol also showed good agreement with 

ICP-MS measurements in spite of significant difference in calibration sample matrix (9 

elements; soluble compounds) and unknown sample (4 elements; insoluble compounds). In 

spite of relatively lower spectral resolution and lack of sample preparation in our ASES 

method, good agreement with the ICP-MS method suggests that using PLS regression with 

an orthogonal training set provides a relatively robust calibration method for field-portable 

microplasma methods for elemental analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A schematic diagram of the multivariate calibration experimental procedure for 

measurement of aerosol elemental concentrations.
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Fig. 2. 
PLS Regression coefficients for chromium by analysis of the full range spectra (300 – 540 

nm).
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Fig. 3. 
Predicted vs measured elemental mass in the collected particle samples for PLS1-45 models.
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Fig. 4. 
Comparison of elemental concentrations predicted by regression models (a) PLS1-45 model, 

(b) PLS1-290 model and (c) U-SE model, and concentrations measured by ICP-MS analysis 

for welding aerosol measurement. The two dashed lines represent ±25% error around the 1:1 

line.
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Table 1.

Elemental composition and concentration of solutions used for generating the calibration aerosol

Sample
No.

Elemental concentration in the solution, mg/L

Cr Mn Fe Ni Cu Zn Cd Pb Ti

1 20 20 20 20 20 20 20 20 20

2 20 5 10 5 40 40 20 10 40

3 5 10 5 40 40 20 10 40 10

4 10 5 40 40 20 10 40 10 30

5 5 40 40 20 10 40 10 30 30

6 40 40 20 10 40 10 30 30 20

7 40 20 10 40 10 30 30 20 40

8 20 10 40 10 30 30 20 40 30

9 10 40 10 30 30 20 40 30 40

10 40 10 30 30 20 40 30 40 5

11 10 30 30 20 40 30 40 5 5

12 30 30 20 40 30 40 5 5 20

13 30 20 40 30 40 5 5 20 30

14 20 40 30 40 5 5 20 30 5

15 40 30 40 5 5 20 30 5 30

16 30 40 5 5 20 30 5 30 10

17 40 5 5 20 30 5 30 10 10

18 5 5 20 30 5 30 10 10 20

19 5 20 30 5 30 10 10 20 5

20 20 30 5 30 10 10 20 5 10

21 30 5 30 10 10 20 5 10 5

22 5 30 10 10 20 5 10 5 40

23 30 10 10 20 5 10 5 40 40

24 10 10 20 5 10 5 40 40 20

25 10 20 5 10 5 40 40 20 10

J Anal At Spectrom. Author manuscript; available in PMC 2022 June 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zheng et al. Page 18

Table 2.

Elemental mass of the aerosol samples collected by the CAM determined by ICP-MS.

Sample
No.

Elemental mass, ng

Cr Mn Fe Ni Cu Zn Cd Pb Ti

1 21.0 21.5 19.5 22.5 25.5 19.0 20.0 20.5 17.5

2 18.5 5.0 8.8 4.3 37.0 34.0 18.0 8.5 32.0

3 6.0 9.5 4.4 40.0 36.0 15.5 8.5 35.5 8.0

4 10.5 5.0 39.5 43.0 21.0 8.5 39.0 12.0 27.0

5 6.0 41.0 45.5 22.5 10.5 36.0 9.5 30.0 28.0

6 37.5 38.5 18.6 9.5 37.0 8.5 28.5 29.5 18.0

7 38.5 20.5 9.5 41.5 10.0 23.5 29.0 20.0 34.5

8 19.5 10.5 32.5 10.0 28.0 23.5 19.5 38.5 26.5

9 10.0 38.0 9.2 30.0 28.0 16.0 38.0 29.0 32.0

10 38.5 10.5 24.5 31.5 20.0 35.0 29.5 39.0 2.6

11 11.5 30.0 29.0 22.0 38.5 25.0 39.0 6.0 5.0

12 31.5 32.0 19.0 44.0 30.0 36.0 6.0 5.5 18.5

13 30.5 21.0 36.0 33.0 40.0 5.0 5.0 19.5 26.0

14 18.0 36.5 26.5 39.5 5.0 4.5 18.5 27.5 3.9

15 39.5 30.0 41.5 5.5 5.0 16.5 29.5 5.0 28.0

16 27.5 37.5 4.3 4.0 17.5 23.5 4.7 26.5 8.5

17 34.0 4.6 4.1 18.5 25.0 3.1 25.5 9.0 7.5

18 5.5 4.7 22.0 28.5 4.7 23.0 8.5 8.0 11.0

19 5.5 20.0 23.5 4.8 27.5 8.5 9.0 19.0 4.3

20 17.5 27.0 4.4 29.0 8.5 8.0 18.0 4.8 7.5

21 27.5 4.9 26.0 8.5 8.5 16.0 4.5 8.5 4.5

22 6.0 29.5 9.2 9.0 19.0 3.9 9.0 5.0 36.5

23 29.0 10.0 9.6 20.0 6.0 8.0 4.8 36.0 35.0

24 9.5 8.5 19.0 3.7 7.5 2.8 32.0 34.0 16.0

25 10.0 20.0 4.9 9.5 5.5 35.5 40.5 21.5 9.0
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Table 3.

Selected elemental emission lines for each element investigated in this study.

Elements Emission lines/nm

Cr 425.43, 427.48, 428.97, 520.45, 520.60, 520.84, 529.82, 534.58

Mn 344.20, 346.03, 347.40, 348.29, 403.08, 403.31, 403.45, 482.35

Fe 374.56,404.58, 406.36, 438.35, 526.95

Ni 300.25, 341.48, 344.63, 345.29, 345.85, 346.17, 349.29, 351.03, 351.51, 352.45, 356.64, 361.94

Cu 510.55, 521.82

Zn 468.01, 472. 22, 481.05, 491.16, 492.40

Cd 361.05, 467.82, 479.99, 508.58, 533.75, 537.81

Pb 405.78, 424.49, 438.65

Ti 334.94, 338.03, 338.38, 375.93, 453.32, 453.48, 498.17, 499.11, 499.95

*
The emission lines highlighted in bold are chosen to construct PLS1-45 regression model and univariate regression model for each element.
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Table 5.

Limits of detection of aerosol spark emission spectroscopy

Elements

Limits of detection

In terms of mass, ng
In terms of air

concentration*, μg/m3

Multivariate
calibration
(PLS1-45)

Univariate
calibration

(U-ME)

Multivariate
calibration
(PLS1-45)

Univariate
calibration

(U-ME)

Cr 1.5 1.8 0.28 0.36

Mn 1.2 1.8 0.24 0.36

Fe 2.5 3.9 0.50 0.78

Ni 2.0 3.5 0.40 0.70

Cu 1.1 1.3 0.22 0.26

Zn 1.8 2.1 0.36 0.42

Cd 0.8 1.3 0.16 0.26

Pb 2.4 4.0 0.48 0.80

Ti 1.1 1.1 0.22 0.22

*
Assuming a flow rate of 2 L min−1 and a sample collection time of 5 min.
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