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Abstract

A multivariate calibration approach, using partial least squares regression, has been developed
for measurement of aerosol elemental concentration. A training set consisting of 25 orthogonal
aerosol samples with 9 factors (elements: Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb, Ti) and 5 levels
(elemental concentrations) was designed. Spectral information was obtained for each aerosol
sample using aerosol spark emission spectroscopy (ASES) at a time resolution of 1 minute.
Simultaneous filter samples were collected for determination of elemental concentration using an
inductively coupled plasma mass spectrometry (ICP-MS) analysis. Two regression models, PLS1
and PLS2, were developed to predict mass concentration from spectral measurements. Prediction
ability of the models improved substantially when only signature wavelengths were included
instead of the entire spectrum. The PLS1 model with 45 selected spectral variables (PLS1-45
model) presented the lowest relative root mean square error of cross validation (RMSECV; 16

- 35%). The detection limits using the PLS1-45 model, for the nine elements were in the range
of 0.16 — 0.50 pg/m3. The performance of both multivariate and univariate regression models
were tested for an unknown sample of welding fume aerosol. The multivariate model did not
provide significantly better prediction compared to the univariate model. In spite of the difference
in matrices of calibration aerosol and the unknown test aerosol, the results from PLS model show
good agreement with those from filter measurements. The relative root mean square error of
prediction (RMSEP) obtained from PLS1-45 model was 13% for Cr, 23% for Fe, 22% for Mn
and 12% for Ni. The study shows that in spite of lower spectral resolution and lack of sample
preparation, reliable and robust measurements can be obtained using the proposed calibration
method based on PLS regression.

TAuthor to whom correspondence should be addressed to: Phone: (513) 841-4300; Fax: (513) 841-4545; PSKulkarni@cdc.gov.
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1 Introduction

Exposure to airborne particles containing toxic metals in industrial atmospheres have
adverse health effects on workers, thereby prompting the need for reliable measurement
methods for exposure characterization. The most widely used methods for determining
concentrations of particulate toxic metals involve filter collection over several hours,
followed by off-line analyses.l: 2 These methods are time-consuming and cannot capture
short-term exposures. Workers cannot obtain instant feedback on their exposure to inhalable
hazards. Developing real-time methods for measuring aerosol chemical composition is of
great significance to instantaneously assess exposure risks.

Our group has investigated various field portable microplasma spectroscopy techniques for
real-time measurement of elemental species in aerosol particles3- using broadband liquid
crystal display (LCD) spectrometers. These techniques include laser-induced breakdown
spectroscopy (LIBS), spark emission spectroscopy (SES) and glow discharge optical
emission spectroscopy (GD-OES), and allow simultaneous multielemental measurement of
aerosol. While these methods offer several practical advantages with respect to development
of low-cost, hand-portable instruments for exposure monitoring, they also suffer from
drawbacks relating to relatively inferior analytical figures of merit (compared to laboratory
instruments) owing to lack of optimal sample preparation and reduced wavelength resolution
of LCD spectrometers. The objective of this study was to investigate the usefulness of
multivariate calibration approaches to improve calibration of microplasma methods for
multielemental aerosol analysis.

For quantitative analysis of aerosols using microplasma spectroscopy, a univariate
calibration approach has been widely used to construct calibration curves for relating

the signal intensity and elemental concentration or mass.3 4 7-10 However, in most
spectroscopic methods, quantitative spectral analyses remains challenging due to sample
matrix effects (physical and chemical matrix effects) and spectral interferences.1! The
emission signal intensity from one element is affected, among other factors, by the overall
chemical composition of the sample. These matrix effects can result in large uncertainties if
univariate calibration methods are used, especially when unknown samples have different
chemical matrices from the calibration standards.12-14 To minimize the sample matrix
effects, matrix-matched standards are often used for univariate calibration in spectroscopic
methods.5: 18 However, preparation and certification of matrix-matched standards are
tedious for a given analytical measurement.

The application of multivariate calibration in spectroscopic analysis has proved to be
beneficial in accounting for matrix effects as well as eliminating spectral interferences.13: 17
Multivariate calibration has been widely used for analysis of natural samples (such as
rubber antioxidants, diesel fuel, seeds, and wine fermentations) by near-infrared (NIR)
spectroscopy which usually presents relatively weak and highly overlapping spectral bands.
18-22 Multivariate calibration has also been employed in atomic emission spectroscopy for
elemental analysis of mixtures, such as steels, alloys, coal, and soil.23-2” Unburned carbon
in fly ash was analysed using LIBS and showed that the multivariate calibration had better
performance than univariate calibration as matrix effects caused by other components in fly
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ash could be taken into account.13 Comparison of single and multivariate calibration for
determination of Si, Mn, Cr and Ni in high-alloyed stainless steels using LIBS has shown
that multivariate analysis of spectral data was more effective and accurate when analytical
lines overlapped.’

In this paper, we present a multivariate calibration approach for simultaneous measurement
of multiple elements in aerosols using SES. Partial least squares (PLS) regression was used
with a calibration training set to build PLS models for predicting elemental concentration
of aerosols. The prediction capability of the PLS models (PLS1 and PLS2) with different
configurations were compared for unknown test sample of welding fume aerosol.

2 Methods

2.1 Instrumentation

Spark emission spectroscopy was used for quantitative measurement of elemental
concentration of aerosols. The details of this method are described elsewhere. 4 5 28 Briefly,
this method involves collection of particles onto a small electrode tip (500 um in diameter)
with a corona aerosol microconcentrator (CAM) 28, followed by ablation of particles by

a spark produced using a high voltage (HV) pulse generator (200 mJ per pulse; ARC-2,
Cascodium Inc., Andover, MA). The optical emission from excited atomic and ionic species
in the spark-induced plasma was collected by a broadband spectrometer (200 — 900 nm
wavelength range, 0.1 nm resolution; LIBS 2500 Plus; Ocean Optics Inc.; Dunedin, FL)

for spectrochemical analysis. A delay time of 5 s and a gate width of 1 ms were used.

The spectral data were used to identify elements and determine their mass in the collected
particle samples.

2.2 Calibration Aerosols

Aerosol containing metals of interest were generated from solutions using a pneumatic
atomizer (model 3076, TSI Inc., Shoreview, MN). The precursor solutions used in the
atomizer were prepared using water-soluble nitrates of analytes of interest. A multilevel
multifactor training set, containing various metals at various concentration levels, was
designed for multivariate calibration. 22 It consisted of 25 samples with 9 mutually
orthogonal factors (i.e., elements: Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb, Ti) and 5 levels (elemental
concentration in solution), as shown in Table 1.

2.3 Experimental procedure

Fig. 1 shows the schematic diagram of the multivariate calibration experimental procedure
for measurement of aerosol elemental concentrations. Test aerosol was generated using a
pneumatic atomizer, then passed through a diffusion dryer. The dry aerosol was introduced
into a CAM for near real-time analysis using SES. The particles were collected in CAM for
1 minute at a flow rate of 2 L min~2, followed by SES measurement following procedures
described elsewhere. 4 © Test aerosol sample was analysed by SES in five consecutive
measurements (the relative standard deviation of signal intensity was less than 15%), and
their average was used to obtain the spectra for each sample. The same test aerosol was
also simultaneously collected on a polyvinyl chloride (PVC) filter for subsequent off-line
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elemental analysis. The particles were collected for 30 minutes at a flow rate of 2 L

min~1. Each filter sample was digested following NIOSH Method 7303 (Hot Block/HCI/
HNO3 Digestion) and then analysed using inductively coupled plasma mass spectrometry
(ICP-MS). ICP-MS was used for filter sample analysis in this study because of its superior
detection limits compared to ICP-AES for most elements. Very low detection limits were
desirable in this study due to short collection times (for filter samples) used in this study.
Studies have shown that ICP-MS has far superior recoveries (~100%) and precision (<0.2)
for determination of metals in filter samples.3° The elemental masses of the aerosol particles
collected on the electrode in CAM were deduced from the elemental air concentrations
obtained from filter collection and ICP-MS analysis, and are shown in Table 2. A model was
constructed using PLS regression as described below.

2.4 PLS regression model

A PLS model was constructed by using the measured spectra for all the test aerosols
generated from the ‘training set’ calibration solutions. The model involves a linear
regression between predictor/explanatory variables A;and response/dependent variables /.
For each measurement, the predicted mass for element j; /m;is given by,

)4
mj = Z ﬂjilli+8j 1)
i=0

where, A;is the signal intensity at wavelength 7 of emission spectra, Bj;the linear regression
coefficient for element /at each wavelength of emission spectra and &;is a noise term for
element /. pis the number of selected discrete wavelengths in each emission spectra.

The general matrix equation for the entire data takes the following form:

Ap=TP' +¢, o
m,, = UQT )

where Ais an 7> pmatrix of predictor variables, m, is an 77x g matrix of response

variables; T and U matrices represent the projections of A, and m, respectively; P and Q

represent the matrices of loadings of the original variables; and £, and e are the residual

matrices related to the noise. In this study, 7= 25, corresponds to the number of total

samples in the training set. The number of explanatory variables p is same as the number

of wavelengths included in the emission spectra. Also the number of response variables g is

same as the number of elements in each sample in the training set, and g = 9.

Two types of models were constructed for each analyte: model PLS1 and model PLS2. In
model PLS1, only one element was modelled each time (i.e. nine separate PLS1 models
were built for each element), while all nine elements were simultaneously used in a single
PLS2 model. 31 Different number of explanatory variables (i.e. signal intensity) were
selected as model inputs to build various models. The number of latent variables for each
model was chosen to correspond to the lowest root mean square error of the cross validation
(RMSECV),32 which typically ranged from 3—-6 ng. Cross validation, which involves
verifying the prediction capability of the PLS model, was performed using the ‘leave-one-
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out” method. In this method, only one sample at a time is left out of the calibration and

the remaining samples are used for constructing a model to predict the sample that has

been left out.32 This procedure is repeated until all samples have been left out once. The
performance of the regression models were evaluated by examining their relative RMSECV
and correlation coefficients R? of cross validation. The PLS analyses were carried out using
the software The Unscrambler 10.0 X (CAMO Software Inc., Woodbridge, NJ).

3 Results and discussion

3.1 Wavelength selection

Several studies involving chemometric analysis of spectroscopic data have employed select
wavelengths as the explanatory variables, and have shown that the prediction ability of
multivariate regression models could be improved when using the wavelengths that capture
or explain maximum variance in the analyte concentration. 33: 34 In this study, PLS
regression coefficients were used for selection of the most relevant wavelengths for each Y
response variable (i.e., elemental mass).33-35 The wavelengths which have larger regression
coefficients represent the emission signals that are better correlated to the mass of analyte.

Fig. 2 shows the PLS1 regression coefficients for Cr in the wavelength range of 300 —

540 nm. Highest regression coefficients were observed around 520 nm wavelength. The
magnified inset (Fig. 2(c)) presents three overlapping peaks around 520 nm. These three
peaks are consistent with the Cr atomic emission lines: Cr 1 520.45 nm, Cr 1 520.60 nm,

and Cr 1 520.84 nm, according to the National Institute of Standards and Technology (NIST)
atomic spectral database. In addition to the triplet peak, there are three consecutive peaks
observed around 360 nm (Fig. 2(a)), 425 nm (Fig. 2(b)) and 530 nm (Fig. 2(d)), respectively.
They correspond to Cr | emission lines at 357.87 nm, 359.35 nm, 360.53 nm, 425.43 nm,
427.48 nm, 428.97 nm, 529.82 nm, 532.83 nm and 534.58 nm according to the NIST atomic
spectral database. Similar relevant wavelengths for all the other elements of interest in this
study were chosen by analysing their PLS regression coefficients. The PLS1 regression
coefficients for all the remaining elements are shown in Fig. S1 in the Supplemental
Information. Five explanatory variables for each emission peak (central wavelength pixel,
including two additional pixels on each side) were used. For each element, wavelengths with
regression coefficients greater than three times the standard deviation (3o) around the mean
regression coefficient (over all the wavelengths) were selected for subsequent verification.
Table 3 shows the emission lines we have verified for each element based on NIST atomic
spectra database (ASD). These lines are not identified as self-absorbing or self-reversing
lines in the ASD. The emission lines highlighted in bold were chosen to construct PLS1-45
and univariate regression models for each element; these lines exhibit relatively higher
regression coefficients and minimal spectral interference.

3.2 Multivariate calibration using PLS

Both PLS1 and PLS2 models were built by constructing the relationship between elemental
mass and spectra. For constructing the PLS1 model, only one analyte was chosen as the
response variable m; (=1, 2, ..., or 9). Here, nine PLS1 models were constructed
separately for each analyte (i.e. response variable). For the PLS2 model, all the nine
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response variables ™, were chosen as the response variables simultaneously. Three A,
matrices with different number of variables were selected as explanatory variables to build
various PLS models. These three A, matrices include: (i) explanatory variables containing
the whole spectra ranging from 300 to 540 nm (4312 variables), (ii) significant explanatory
variables containing multiple emission peaks related to the analytes (all the emission peaks
shown in Table 3, i.e., 290 variables), and (iii) a subset of significant explanatory variables
containing only one emission peak for each element (i.e., the ones with relatively higher
regression coefficient and minimal spectral interference with other elements, highlighted in
Table 3; 45 variables in total for all the nine elements). To simplify the model description,
these models were denoted as PLS1-4312, PLS1-290, PLS1-45, PLS2-4312, PLS2-290, and
PLS2-45, respectively.

Table 4 shows the relative RMSECV and R? obtained from cross validation for different
models. Comparison of the PLS models constructed with different numbers of variables
shows that the models with selected variables (PLS1-290, PLS1-45, PLS2-290, and
PLS2-45) were significantly superior to the models with the whole spectra (PLS1-4312
and PLS2-4312). For PLS1 models, as the variable number is reduced from 4312 to 45,
the average relative RMSECYV for the nine elements is reduced from 36% to 25% and the
average R? is improved from 0.65 to 0.84. This result demonstrates that variable selection
plays an important role in multivariate calibration for elemental mass using spark emission
spectroscopy. Although the PLS model has the ability to deal with numerous variables,

the error of prediction could deteriorate if the entire raw spectral data are used in the
calibration, because the majority of data consist of noise. Therefore, the use of selected
explanatory variables that are most relevant to the underlying phenomenon as input variables
is essential to construct the optimal PLS model. Comparison of PLS1 models using the
selected wavelengths (PLS1-290 and PLS1-45) shows that their prediction abilities are quite
similar. This is because the signal intensities of multiple emission peaks from the same
element are correlated. Selection of one emission peak for each element as input variables
of the PLS model is sufficient for constructing accurate multivariate models. Of all the
nine elements, Fe and Pb show low R? values, likely due to the high detection limits of

Fe and Pb in our system (the detection limits are shown in Table 5). In this study, the
elemental concentration of Fe and Pb in the calibration aerosol were close to their limit of
quantification, leading to increased measurement uncertainty and poor RZ.

Table 4 also shows that the relative RMSECVs of PLS1 models are 2 — 4% smaller than
PLS2 models. This suggests that the PLS1 models have lower error than the PLS2 models.
However, the need to construct a separate model for each element is a drawback of PLS1
approach. On the other hand, one PLS2 model can be applied simultaneously to all the
elements and is easier to implement.

Using the 25 multielement samples in the training set, a univariate regression model (U-ME)
was also constructed for each element by plotting the signal intensity of an emission line

as a function of elemental mass. For each element, the emission line with the highest
regression coefficient was used. The signal intensity of an emission line was calculated

as either the peak height or the peak area, both after baseline correction. The U-ME

models were described using linear regression curves. These univariate calibration curves
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(based on peak height) are shown in Fig. S2 in the Supplemental Information. The R?

and RMSE of the univariate regression are also shown in Table 4. The R? values in the
parenthesis are obtained from univariate regression using peak area for each element. Both
the peak height- and peak area-based calibration curves yielded similar sensitivity. For

most elements, the U-ME model gives similar R2 and RMSE values to those of the PLS
models with select variables (i.e. PLS1-290, PLS1-45, PLS2-290, and PLS2-45). There is no
consistent evidence in the literature about the effectiveness of different calibration methods
(i.e. multivariate and univariate methods).13: 14 17 For example, some studies on sample
analysis using LIBS suggest that multivariate calibration provides improved accuracy and
precision compared with univariate calibration, 13 14 while another study on determination
of elements in stainless steels using LIBS showed that the univariate calibration provided the
best prediction if appropriate, non-overlapping emission lines could be found. 17 To a certain
extent, the performance of different calibration approaches depends on both spectral overlap
and design of the calibration experiments.3 In this study, we designed the training set with
orthogonal factors (using elements relevant to welding aerosol measurement) and selected
the non-overlapping emission peaks for calibration. Both the univariate and multivariate
calibration approaches showed similar prediction capability.

Fig. 3 shows comparison of calibration values (open circle) with the corresponding cross-
validation (solid triangle) for the PLS1-45 model. The mass predicted by the model is
plotted on the y-axis and corresponding to the measured mass on the x-axis. These models
were constructed with 9, 5, 6, 5, 3, 4, 3, 6, 5 latent variables for Cr, Mn, Fe, Ni, Cu, Zn, Cd,
Pb, and Ti, respectively. The PLS regression results (open circle) show a strong correlation
between the predicted and measured elemental mass, with R2 values in the range of 0.81 —
0.96 for different elements. The cross validation results (solid triangle) also show a strong
correlation with an average R? values of 0.84. The relative RMSECV of PLS1-45 models
for different elements is in the range of 16 — 35%. For Fe low R? (0.71) and high RMSECV
(35%) were observed, probably due to the poor detection limits of Fe in our system (the
detection limit is shown in Table 5). A large uncertainty might be produced when the
elemental mass concentration of calibration aerosol is near the limits of quantification.
Matrix effects may also have been relatively more significant for Fe measurement.

3.3 Limits of detection

According to 3-o criteria defined by the International Union of Pure and Applied Chemistry
(IUPAC),%7 the limit of detection (LOD) for univariate calibration is expressed as,

30
MLOD = ~§ (3

where o is the standard deviation of the blank at the selected emission line and Sthe
sensitivity given by the slope of the calibration curve of univariate calibration. Blank
measurements were taken and o was obtained by averaging over 20 replicate blank
measurements.

LOD in multivariate calibration was determined analogously to the univariate calibration:
38, 39
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mrop = % =330 b|| = 3.30\/b} + - + b? @)

where o is an estimate of the noise level in the data, Sis the sensitivity of the PLS

model, that gives the fraction of analytical signal due to the increase of the concentration

of a particular analyte at unit concentration, ll4ll is the Euclidian norm of the regression
coefficients vector, and 4, is the 77 regression coefficient. o-was obtained by measuring the
variation of the noise in the selected regions for each analyte. Swas estimated as the inverse
of lbll. Table 5 shows the LOD obtained from both univariate calibration and multivariate
calibration (PLS1-45 model) for elemental measurement using SES. The mass LOD for
multivariate calibration is in the range of 0.8 — 2.5 ng depending on the element, with the
lowest LOD for Cd and the highest LOD for Fe. The LOD for multivariate calibration is

in the range of 0.16 — 0.50 pg m=3 in terms of air concentration, calculated by assuming

a flow rate of 2 L min~1, a collection time of 5 minutes, and particle collection efficiency

of 0.5 for our system. Comparison of the LODs from univariate and multivariate calibration
shows that both approaches provide similar LODs for most elements (except Fe, Ni, and
Pb). This result is consistent with that found by Braga et al. in their study on comparison of
univariate and multivariate calibration for determination of micronutrients in plant materials
using LIBS. 37 It is worth noting that the LOD for Fe, Ni, and Pb from univariate calibration
is nearly twice that from the multivariate calibration. This difference could possibly be due
to higher measurement uncertainties for these elements arising from matrix effects.

3.4 Application to welding aerosol measurement

We applied the multivariate regression models (PLS1-45 and PLS1-290), developed using
the training set, to the measurement of unknown elemental concentration of welding aerosol.
Test welding aerosol was generated by aerosolizing suspension of stainless steel welding
fume reference material (HSL SSWF-01, Health & Safety Laboratory, Buxton, UK). It
should be noted that the matrix composition of this reference material (i.e., number of
elements and their relative concentration in the matrix) and their solubility are different from
that of the calibration samples (Table 1). The compounds used for calibration were soluble,
while the welding fume particles were insoluble. From the suspension containing welding
fume reference material, aerosols with five different air concentration levels were obtained
through dilution of the aerosol with clean, particle-free air. Test aerosols were collected for 2
minutes using the ASES system at 2 L min~1. The elemental masses in the collected samples
were predicted using both multivariate and univariate regression models, and then inverted to
elemental air concentrations. Three repeat measurements were performed by ASES for each
test aerosol sample. Simultaneously, filter samples were collected (for 30 min) in parallel to
obtain the elemental concentrations of test welding aerosol by laboratory ICP-MS analysis
after sample digestion. The test aerosols were relatively stable during these 30 minutes.

Fig. 4 shows the comparison of elemental concentration predicted by the regression models:
(a) PLS1-45 model, (b) PLS1-290 model, (c) univariate calibration from single element
solutions (U-SE model). Model predictions are compared with corresponding ICP-MS
measurements shown on x-axis. Fig. 4 shows that most (17 out of 20 for PLS1-45 model, 16
out of 20 for PLS1-290 model, and 15 out of 20 for U-SE model) samples agreed with the
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ICP-MS measurements within the +25% bias. The results from the multivariate models [Fig.
4 (a) and (b)] show good agreement with those from filter samples using ICP-MS. However,
it is worth noting that the univariate calibration curve exhibits non-linear behaviour at
higher mass loadings. The effect was not pronounced at mass loadings studied in this work;
however, the extrapolation of the curve seems to suggest significantly nonlinear behaviour
at mass loadings above 100 pg/m?3 [Fig. 4 (c)]. In spite of the difference in matrices, with
respect to solubility and elemental composition, of calibration aerosol and welding fume
aerosol, the agreement between ASES measurements and the ICP-MS measurements is
good. This demonstrates that the prediction models constructed using particles aerosolized
from soluble precursor species could be reliably used for measurement of unknown
insoluble (or soluble) particles using ASES. This significantly simplifies calibration of field
portable ASES instruments.

Relative root mean square error of prediction (RMSEP) was used to estimate the accuracy
of our regression models. The relative RMSEP from the PLS1-45 model was 13% for

Cr, 23% for Fe, 22% for Mn and 12% for Ni. The relative RMSEP from the PLS1-290
model was 12% for Cr, 25% for Fe, 21% for Mn and 13% for Ni. The relative RMSEP
from the U-SE model was 14% for Cr, 27% for Fe, 29% for Mn and 10% for Ni.
Multivariate calibration approach resulted in slightly better prediction accuracy than the
single element univariate calibration approach when they were applied to measurement

of welding fume aerosol. The welding aerosol represented a smaller subset of calibration
aerosol in terms of the number of elements—the calibration aerosol had nine elements;
whereas the welding aerosol had only four elements. Moreover, as noted above, unlike the
calibration aerosols, the welding aerosol particles were insoluble in water. The matrix effects
in these samples may not be pronounced, which may explain somewhat similar results from
both univariate and multivariate methods. However, the multivariate method may provide
better precision in cases where significant matrix effects or nonlinear calibration curve are
expected. Multivariate methods should also provide better precision and accuracy for cases
involving significant spectral overlap or interference for analytes of interest.

The error bars in Fig. 4 show the standard deviation of three replicate measurements, which
ranged from 7 — 19%, demonstrating good precision of the ASES aerosol measurement
system.

Conclusions

A multivariate calibration approach for measurement of aerosol elemental concentrations
by SES was developed. The orthogonal training set design (Table 1) in combination with
suitable multivariate calibration allows one to make full use of the multielemental emission
spectra without the loss of spectral selectivity. It was shown that PLS regression coefficients
can be judiciously used as a guide for selecting most relevant portions of the emission
spectra and allow construction of meaningful multivariate regression models.

Separate PLS models for single element (i.e. model PLS1) offers slightly improved
prediction ability than a single PLS model for multiple elements (model PLS2). Using a
training set with orthogonal factors, it was found that multivariate models provided slightly
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better prediction compared to the univariate model. The simplicity of univariate calibration
methods may be more attractive in applications where the unknown matrix has fewer
elements and is relatively homogenous. However, multivariate calibration may be preferable
for aerosol particles containing large numbers of elements with highly varying elemental
ratios. The multivariate model may also provide better precision when significant spectral
interferences or overlapping is expected.

Application of the PLS models to welding aerosol also showed good agreement with
ICP-MS measurements in spite of significant difference in calibration sample matrix (9
elements; soluble compounds) and unknown sample (4 elements; insoluble compounds). In
spite of relatively lower spectral resolution and lack of sample preparation in our ASES
method, good agreement with the ICP-MS method suggests that using PLS regression with
an orthogonal training set provides a relatively robust calibration method for field-portable
microplasma methods for elemental analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
A schematic diagram of the multivariate calibration experimental procedure for
measurement of aerosol elemental concentrations.
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Comparison of elemental concentrations predicted by regression models (a) PLS1-45 model,
(b) PLS1-290 model and (c) U-SE model, and concentrations measured by ICP-MS analysis
for welding aerosol measurement. The two dashed lines represent £25% error around the 1:1

line.
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Elemental composition and concentration of solutions used for generating the calibration aerosol

Elemental concentration in the solution, mg/L

Sample
No.  cr Mn Fe Ni Cu zn Cd Pb Ti
1 20 20 20 20 20 20 20 20 20
2 20 5 10 5 40 40 20 10 40
3 5 10 5 40 40 20 10 40 10
4 10 5 40 40 20 10 40 10 30
5 5 40 40 20 10 40 10 30 30
6 40 40 20 10 40 10 30 30 20
7 40 20 10 40 10 30 30 20 40
8 20 10 40 10 30 30 20 40 30
9 10 40 10 30 30 20 40 30 40
10 40 10 30 30 20 40 30 40 5
1 10 30 30 20 40 30 40 5 5
12 30 30 20 40 30 40 5 5 20
13 30 20 40 30 40 5 5 20 30
14 20 40 30 4 5 5 20 30 5
15 40 30 40 5 5 20 30 5 30
16 30 40 5 5 20 30 5 30 10
17 40 5 5 20 30 5 30 10 10
8 5 5 20 30 5 30 10 10 20
19 5 20 3 5 30 10 10 20 5
20 20 30 5 3 10 10 2 5 10
21 3 5 30 10 10 20 5 10 5
2 5 30 10 10 20 5 10 5 40
22 3 10 10 2 5 10 5 40 40
24 10 10 20 5 10 5 40 40 20
25 10 20 5 10 5 40 40 20 10
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Elemental mass of the aerosol samples collected by the CAM determined by ICP-MS.

Table 2.

Elemental mass, ng

Sample
No. . cr Mn Fe Ni Cu zn Cd Pb Ti
1 210 215 195 225 255 190 200 205 175
2 185 50 88 43 370 340 180 85 320
3 60 95 44 400 360 155 85 355 80
4 105 50 395 430 210 85 390 120 27.0
5 60 410 455 225 105 360 95 300 28.0
6 375 385 186 95 370 85 285 295 180
7 385 205 95 415 100 235 200 200 345
8 195 105 325 100 280 235 195 385 265
9 100 380 92 300 280 160 380 290 320
10 385 105 245 315 200 350 295 390 26
11 115 300 290 220 385 250 390 60 50
12 315 320 190 440 300 360 60 55 185
13 305 210 360 330 400 50 50 195 260
14 180 365 265 395 50 45 185 275 39
15 395 300 415 55 50 165 295 50 280
16 275 375 43 40 175 235 47 265 85
17 340 46 41 185 250 31 255 90 75
18 55 47 220 285 47 230 85 80 110
19 55 200 235 48 275 85 90 190 43
20 175 270 44 290 85 80 180 48 75
21 275 49 260 85 85 160 45 85 45
22 60 295 92 90 190 39 90 50 365
23 290 100 96 200 60 80 48 360 350
24 95 85 190 37 75 28 320 340 160
25 100 200 49 95 55 355 405 215 90
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Table 3.

Selected elemental emission lines for each element investigated in this study.

Elements  Emission lines/nm

Cr 425.43, 427.48, 428.97, 520.45, 520.60, 520.84, 529.82, 534.58

Mn 344.20, 346.03, 347.40, 348.29, 403.08, 403.31, 403.45, 482.35

Fe 374.56,404.58, 406.36, 438.35, 526.95

Ni 300.25, 341.48, 344.63, 345.29, 345.85, 346.17, 349.29, 351.03, 351.51, 352.45, 356.64, 361.94
Cu 510.55, 521.82

Zn 468.01, 472. 22, 481.05, 491.16, 492.40

Cd 361.05, 467.82, 479.99, 508.58, 533.75, 537.81

Pb 405.78, 424.49, 438.65

Ti 334.94, 338.03, 338.38, 375.93, 453.32, 453.48, 498.17, 499.11, 499.95

Page 19

*
The emission lines highlighted in bold are chosen to construct PLS1-45 regression model and univariate regression model for each element.
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Table 5.

Limits of detection of aerosol spark emission spectroscopy

Limits of detection

In terms of air

In terms of mass, ng L 3
concentration , pg/m

Elements
Multivariate  Univariate  Multivariate  Univariate
calibration  calibration  calibration  calibration
(PLS1-45) (U-ME) (PLS1-45) (U-ME)
Cr 15 1.8 0.28 0.36
Mn 1.2 1.8 0.24 0.36
Fe 25 39 0.50 0.78
Ni 2.0 35 0.40 0.70
Cu 11 13 0.22 0.26
Zn 18 21 0.36 0.42
Cd 0.8 1.3 0.16 0.26
Pb 24 4.0 0.48 0.80
Ti 11 11 0.22 0.22

*
Assuming a flow rate of 2 L min~L and a sample collection time of 5 min.
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